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ABSTRACT 

To stand up our next generation AIoT ecosystem, Microsoft is 

working with industry partners to build AI camera that integrates 

lens, camera sensors, AI accelerator with security chips, a host 

machine that connects to Azure cloud services in a simple to 

develop, integrate and maintain software, services, and hardware 

solution. The AI camera supports popular classification and object 

detection deep neural networks and achieves high inference 

throughput in consideration of energy efficiency. In addition, 

there are new needs coming from verticals to suppress disease 

transmission after the outbreak of COVID-19. Thus, we use AI 

camera and Azure integrated toolchain to build intelligent 

solutions. Those solutions are easy to be built in a short time to 

quickly respond the emergent needs in COVID-19 era. 
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1 Introduction 

With the growth of connected IoT devices and AI, companies 

including start-ups and corporate giants recognize the paradigm 

shift that AIoT brings and the business opportunity with it. They 

start looking for intelligent edge solutions to process the sensor 

data with AI accelerators. In this AIoT ecosystem, silicon 

evaluation kits and reference devices are top of the stream. Device 

builders largely edit these to build application specific instances. 

Cameras provided rich data across verticals. We have received the 

inquiries of building scalable and secure end to end AI solutions 

with camera sensors from construction, manufacturing, retail, 

smart building, transportation, etc. verticals. To stand up our next 

generation AIoT ecosystem, we work with ecosystem partners to 

build AI camera that integrates lens, camera sensors, AI 

accelerator with security chips, a host machine that connects to 

Azure cloud services in a simple to develop, integrate and 

maintain software, services, and hardware solution. In addition, 

Azure integrated toolchain provides various paths to build, 

customize, and manage their solutions easily. 

After the outbreak of coronavirus COVID-19, verticals are 

looking for quick respond solutions to suppress disease 

transmission. For example, face masks detection for building 

entrance, car type, color, license plate detection for curb pickup, 

etc. We use the AI camera and Azure integrated toolchain to build 

several solutions for the scenarios in COVID-19 era. 

2 Architecture of AI Camera 

AI Camera integrates lens, camera sensors, AI accelerator with 

security chips, and a host machine. Figure 1 shows the flow of AI 

camera. AI Camera is an AIoT device that provides vision sensors 

to collect data. AI accelerator processes the image data and 

perform inference with deep learning models. Host machine is an 

IoT gateway connected to Internet to clean and forward data to 

cloud for further analysis. The camera module connects to the AI 

accelerator by a MIPI cable, and the AI accelerator connects to the 

host by a USB cable. First, the AI model is packed in a container 

[1] that deployed to the host. It also authenticates the security 

chips on edge compute module. Second, the host sends AI model 

to AI accelerator and a start signal to initiate the camera frame 

processing. The image frames are captured and sent to the image 

signal processor for pre-processing. The pre-processed image is 

directly sent to the AI accelerator for running inference. Then, the 

inference results and camera stream are sent back to the host. 

Finally, the host process the results in container, it can provide 

RTSP (real time streaming protocol) stream to RTSP clients and 

send data and telemetry to Azure cloud for further analysis. 
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1. Deploy the container from Azure cloud to host. 

2. The container starts and authenticates with the security chip. 

3. If the AI camera is authenticated, the container sends the AI 

model to AI accelerator and a start signal to initiate camera 

capture. 

4. Camera frames are captured and sent to image signal 

processor of AI accelerator for pre-processing. 

5. The pre-processed image is directly sent to neural network 

compute engine for running inference. 

6. Camera stream is sent to host. 

7. Inference result is sent to host. 

8. Process the result in container, provide RTSP stream, send 

data and telemetry to Azure cloud for further analysis. 

Figure 1: Flow of AI camera 

To get an AI model, there are three primary options. The first one 

is to use the prebuilt models from the model zoo. Model zoo is a 

collection of pre-trained, state-of-the-art models contributed by 

community members. The second one is to leverage transfer 

learning to retrain your own computer vision models that fit with 

unique use cases with some images. Here we integrate with Azure 

Custom Vision [2], which is optimized to quickly recognize major 

differences between images, so you can start prototyping your 

model with a small amount of data and just a few clicks. Azure 

Custom Vision provides different output formats for various 

devices, including the model for the AI camera. Figure 2 shows 

the flow of retraining your own computer vision models for AI 

camera. The third one is for data scientists to build your own 

model and convert to the format for the AI camera. 

To deploy the solution at scale, the software, including AI models, 

inference application, business logics, etc., are packed in 

containers [1], which is a standard unit of software that packages 

up code and all its dependencies so the application runs quickly 

and reliably from one computing environment to another. Then, 

you can deploy those containers to any of your devices and 

monitor it all from the cloud. Azure IoT Edge [3] moves cloud 

analytics and custom business logic to devices so that your 

organization can focus on business insights instead of data 

management. Here we use Azure IoT Edge to deploy, monitor, 

and manage IoT edge devices.  

 

                    

Figure 2: Flow of retraining your own computer vision models  

Figure 3 shows two primary options to create and update the 

solution with container. The first one to create a new container 

that packs AI models, inference application, business logics, and 

all its dependencies to the container. Then, deploy the container 

by Azure IoT Edge. The Second one is to leverage an existing 

container and update the AI models using module twin update. 

Module twins are JSON documents that store module state 

information including metadata, configurations, and conditions. 

The AI models are updated by specifying module twin properties 

of the locations of AI models from cloud. The device receives the 

updated properties and downloads new AI models to host. Host 

sends the AI model to AI accelerator and sends a restart signal to 

initiate camera capture. 

 

Figure 3: Create and update the solution with container 

3 Results 

We evaluate the performance of AI camera by power 

consumption and inference throughput since they are important 

for AIoT devices. In addition, we use Azure integrated toolchain 

for AI camera to build solutions for the post COVID-19 world in a 

short time.  

Table 1 shows the maximum power consumption of components. 

The camera module only captures images from image sensor, 

which consumes little power. The AI accelerator runs a RTOS 

(real time operating system) that processes image and perform AI 

inference, which consumes most power in the AI camera. The 

host runs a Linux based OS that communicates between cloud and 

AI accelerator, it consumes less power than the AI accelerator. 

Table 1: Power consumption of components 
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<0.1 W 4.5 W 4 W 

Table 2 shows the inference throughput of different models. We 

choose popular classification and object detection deep neural 

networks run on the AI camera with FP16 precision to measure 

the inference throughput of AI accelerator in FPS (frames per 

second). The experimental results show it can achieve high FPS 

for most of the popular classification and object detection deep 

neural networks with consideration of power consumption. 

Table 2: Inference throughput of models 

Model 
Input size 

(pixel) 

Inference 

Throughput 

(FPS) 

Classificat

ion 

ShuffleNet v2 [4] 224 x 224 70.6 

ResNet-50 [5] 224 x 224 28.0 

Inception v4 [6] 299 x 299 6.3 

Object 

Detection 

MobileNet v2 

SSDLite [7] 
320 x 320 34.3 

Tiny YOLO v3 [8] 416 x 416 22.7 

YOLO v2 (without 

non maximum 

suppression) [9] 

416 x 416 16.3 

MobileNet SSD v2 

[10] [11] 
300 x 300 14.0 

YOLO v3 [8] 416 x 416 5.6 

Faster RCNN (with 

ResNet50 

backbone) [12] 

600 x 600 0.6 

3.1 Face mask detection 

After the outbreak of COVID-19, lots of buildings need additional 

staff stand at the entrance to make sure anyone walking in wears a 

face mask and use infrared thermometers to check if anyone has a 

fever, which is to detect people who might have the coronavirus. 

However, most of buildings (including hospitals) would rather 

have their staff do other jobs. Those assigned to check people 

coming in for face masks and fever also face the risk of catching 

the coronavirus. 

To build the mask detection solution with AI camera, we leverage 

the face detection model in the model zoo. Once the face is 

detected, we apply a classification model to check if there is a 

mask in the face region. The mask classification model is trained 

using Azure Custom Vision service and exported to run with the 

AI accelerator. The inference results can send to cloud and 

provide a dashboard for monitoring and analysis. 

3.2 Curbside pickup 

In this COVID-19 era, we still need to get essential supplies, 

groceries, etc., and we need to do this safely and securely. 

Imagine a customer is going online the local retailer and making a 

grocery purchase as part of the customer’s account, and chosen to 

have the car type, color, and license plate registered with the 

retailer. When the customer pulls up to the retailer, the car type, 

color, and license plate are detected. The online purchase products 

are brought out and placed in the trunk. 

To build car type, color, license plate detection solution for 

curbside pickup solution, we took pictures of different types of 

cars, different colors of cars from all angles, inside parking 

garages, in the shade, and outside in the sun. Some with license 

plates and others without. Those pictures are uploaded to the 

Azure Custom Vision to train a classifier. The model is exported, 

packed to containers, and deployed to the AI camera. The 

inference results can send to cloud and integrate with retailer’s 

information systems. 

4 Conclusion 

AI camera integrates hardware accelerated AI with security chips 

and connect to Azure services in a simple to develop, integrate 

and maintain software, services, and hardware solution. It 

supports popular classification and object detection deep neural 

networks and achieves high throughput in consideration of power 

consumption. Azure integrated toolchain makes it easy to build 

the solution in a short time and deploy at scale. We will keep 

working with ecosystem partners to build various AI powered 

intelligent edge devices. 

REFERENCES 
[1]  Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, 

Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. 2015. 
Evaluation of docker as edge computing platform. In Proceedings of IEEE 
Conference on Open Systems, 130-135. 

[2]  Mathew Salvaris, Danielle Dean, and Wee Hyong Tok. 2018. Cognitive 
Services and Custom Vision. Deep Learning with Azure. Apress, Berkeley, CA. 

[3]  David Jensen. 2019. Azure IoT Edge Core Concepts. Beginning Azure IoT Edge 
Computing, 17-47. Apress, Berkeley, CA. 

[4]  Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet 
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of 
European Conference on Computer Vision, 116-131. 

[5]  Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016. Deep residual 
learning for image recognition. In Proceedings of the IEEE conference on 
computer vision and pattern recognition, 770-778. 

[6]  Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. 2017. 
Inception-v4, inception-resnet and the impact of residual connections on 
learning. In Proceedings of AAAI conference on artificial intelligence, 4278-
4284. 

[7]  Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and 
Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear 
bottlenecks. In Proceedings of the IEEE conference on computer vision and 
pattern recognition, 4510-4520. 

[8]  Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement. 
arXiv preprint arXiv:1804.02767. 

[9]  Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In 
Proceedings of the IEEE conference on computer vision and pattern 
recognition, 7263-7271. 

[10]  Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and 
Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear 
bottlenecks. In Proceedings of IEEE conference on computer vision and pattern 
recognition, 4510-4520. 

[11]  Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, 
and Cheng-Yang Fu, Alexander C. Berg. 2016. Ssd: Single shot multibox 
detector. In Proceedings of European conference on computer vision, 21-37. 

[12]  Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: 
Towards real-time object detection with region proposal networks. In 
Proceedings of Advances in neural information processing systems, 91-99. 


