
Intelligent Solutions in the COVID-19 Era with AI Camera

Ming-Chih Lin
 Cloud + AI
Microsoft

Taipei, Taiwan
tolin@microsoft.com

Chris McMillan
Cloud + AI
Microsoft

Taipei, Taiwan
chrismc@microsoft.com

Ti-Hua Yang
Cloud + AI
Microsoft

Taipei, Taiwan
 anneyang@microsoft.com

Dan Rosenstein
Cloud + AI
Microsoft

Taipei, Taiwan
danrose@microsoft.com

Yu-Kwen Hsu
Cloud + AI
Microsoft

Taipei, Taiwan
yukwenh@microsoft.com

Jussi Niemela
 Cloud + AI
Microsoft

Taipei, Taiwan
juniem@microsoft.com

ABSTRACT

To stand up our next generation AIoT ecosystem, Microsoft is

working with industry partners to build AI camera that integrates

lens, camera sensors, AI accelerator with security chips, a host

machine that connects to Azure cloud services in a simple to

develop, integrate and maintain software, services, and hardware

solution. The AI camera supports popular classification and object

detection deep neural networks and achieves high inference

throughput in consideration of energy efficiency. In addition,

there are new needs coming from verticals to suppress disease

transmission after the outbreak of COVID-19. Thus, we use AI

camera and Azure integrated toolchain to build intelligent

solutions. Those solutions are easy to be built in a short time to

quickly respond the emergent needs in COVID-19 era.

KEYWORDS

AIoT, AI camera, edge devices, cloud, container

ACM Reference format:

Ming-Chih Lin, Ti-Hua Yang, Yu-Kwen Hsu, Chris McMillan, Dan

Rosenstein and Jussi Niemela. 2020. Intelligent Solutions in the COVID-

19 Era with AI Camera. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining

(KDD’20). ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/1234567890

1 Introduction

With the growth of connected IoT devices and AI, companies

including start-ups and corporate giants recognize the paradigm

shift that AIoT brings and the business opportunity with it. They

start looking for intelligent edge solutions to process the sensor

data with AI accelerators. In this AIoT ecosystem, silicon

evaluation kits and reference devices are top of the stream. Device

builders largely edit these to build application specific instances.

Cameras provided rich data across verticals. We have received the

inquiries of building scalable and secure end to end AI solutions

with camera sensors from construction, manufacturing, retail,

smart building, transportation, etc. verticals. To stand up our next

generation AIoT ecosystem, we work with ecosystem partners to

build AI camera that integrates lens, camera sensors, AI

accelerator with security chips, a host machine that connects to

Azure cloud services in a simple to develop, integrate and

maintain software, services, and hardware solution. In addition,

Azure integrated toolchain provides various paths to build,

customize, and manage their solutions easily.

After the outbreak of coronavirus COVID-19, verticals are

looking for quick respond solutions to suppress disease

transmission. For example, face masks detection for building

entrance, car type, color, license plate detection for curb pickup,

etc. We use the AI camera and Azure integrated toolchain to build

several solutions for the scenarios in COVID-19 era.

2 Architecture of AI Camera

AI Camera integrates lens, camera sensors, AI accelerator with

security chips, and a host machine. Figure 1 shows the flow of AI

camera. AI Camera is an AIoT device that provides vision sensors

to collect data. AI accelerator processes the image data and

perform inference with deep learning models. Host machine is an

IoT gateway connected to Internet to clean and forward data to

cloud for further analysis. The camera module connects to the AI

accelerator by a MIPI cable, and the AI accelerator connects to the

host by a USB cable. First, the AI model is packed in a container

[1] that deployed to the host. It also authenticates the security

chips on edge compute module. Second, the host sends AI model

to AI accelerator and a start signal to initiate the camera frame

processing. The image frames are captured and sent to the image

signal processor for pre-processing. The pre-processed image is

directly sent to the AI accelerator for running inference. Then, the

inference results and camera stream are sent back to the host.

Finally, the host process the results in container, it can provide

RTSP (real time streaming protocol) stream to RTSP clients and

send data and telemetry to Azure cloud for further analysis.

KDD’20, August, 2020, San Diego, California USA M. Lin et al.

1. Deploy the container from Azure cloud to host.

2. The container starts and authenticates with the security chip.

3. If the AI camera is authenticated, the container sends the AI

model to AI accelerator and a start signal to initiate camera

capture.

4. Camera frames are captured and sent to image signal

processor of AI accelerator for pre-processing.

5. The pre-processed image is directly sent to neural network

compute engine for running inference.

6. Camera stream is sent to host.

7. Inference result is sent to host.

8. Process the result in container, provide RTSP stream, send

data and telemetry to Azure cloud for further analysis.

Figure 1: Flow of AI camera

To get an AI model, there are three primary options. The first one

is to use the prebuilt models from the model zoo. Model zoo is a

collection of pre-trained, state-of-the-art models contributed by

community members. The second one is to leverage transfer

learning to retrain your own computer vision models that fit with

unique use cases with some images. Here we integrate with Azure

Custom Vision [2], which is optimized to quickly recognize major

differences between images, so you can start prototyping your

model with a small amount of data and just a few clicks. Azure

Custom Vision provides different output formats for various

devices, including the model for the AI camera. Figure 2 shows

the flow of retraining your own computer vision models for AI

camera. The third one is for data scientists to build your own

model and convert to the format for the AI camera.

To deploy the solution at scale, the software, including AI models,

inference application, business logics, etc., are packed in

containers [1], which is a standard unit of software that packages

up code and all its dependencies so the application runs quickly

and reliably from one computing environment to another. Then,

you can deploy those containers to any of your devices and

monitor it all from the cloud. Azure IoT Edge [3] moves cloud

analytics and custom business logic to devices so that your

organization can focus on business insights instead of data

management. Here we use Azure IoT Edge to deploy, monitor,

and manage IoT edge devices.

Figure 2: Flow of retraining your own computer vision models

Figure 3 shows two primary options to create and update the

solution with container. The first one to create a new container

that packs AI models, inference application, business logics, and

all its dependencies to the container. Then, deploy the container

by Azure IoT Edge. The Second one is to leverage an existing

container and update the AI models using module twin update.

Module twins are JSON documents that store module state

information including metadata, configurations, and conditions.

The AI models are updated by specifying module twin properties

of the locations of AI models from cloud. The device receives the

updated properties and downloads new AI models to host. Host

sends the AI model to AI accelerator and sends a restart signal to

initiate camera capture.

Figure 3: Create and update the solution with container

3 Results

We evaluate the performance of AI camera by power

consumption and inference throughput since they are important

for AIoT devices. In addition, we use Azure integrated toolchain

for AI camera to build solutions for the post COVID-19 world in a

short time.

Table 1 shows the maximum power consumption of components.

The camera module only captures images from image sensor,

which consumes little power. The AI accelerator runs a RTOS

(real time operating system) that processes image and perform AI

inference, which consumes most power in the AI camera. The

host runs a Linux based OS that communicates between cloud and

AI accelerator, it consumes less power than the AI accelerator.

Table 1: Power consumption of components

4

8

7

6

AI Accelerator

5

3

2

1

Camera Module

Cloud

Lens

sensor

Image Signal

Processor

Neural Network

Compute Engine

Host

Container

Security Chip

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Camera

Module

AI

Accelerator
Host

Max power

consumption
<0.1 W 4.5 W 4 W

Table 2 shows the inference throughput of different models. We

choose popular classification and object detection deep neural

networks run on the AI camera with FP16 precision to measure

the inference throughput of AI accelerator in FPS (frames per

second). The experimental results show it can achieve high FPS

for most of the popular classification and object detection deep

neural networks with consideration of power consumption.

Table 2: Inference throughput of models

Model
Input size

(pixel)

Inference

Throughput

(FPS)

Classificat

ion

ShuffleNet v2 [4] 224 x 224 70.6

ResNet-50 [5] 224 x 224 28.0

Inception v4 [6] 299 x 299 6.3

Object

Detection

MobileNet v2

SSDLite [7]
320 x 320 34.3

Tiny YOLO v3 [8] 416 x 416 22.7

YOLO v2 (without

non maximum

suppression) [9]

416 x 416 16.3

MobileNet SSD v2

[10] [11]
300 x 300 14.0

YOLO v3 [8] 416 x 416 5.6

Faster RCNN (with

ResNet50

backbone) [12]

600 x 600 0.6

3.1 Face mask detection

After the outbreak of COVID-19, lots of buildings need additional

staff stand at the entrance to make sure anyone walking in wears a

face mask and use infrared thermometers to check if anyone has a

fever, which is to detect people who might have the coronavirus.

However, most of buildings (including hospitals) would rather

have their staff do other jobs. Those assigned to check people

coming in for face masks and fever also face the risk of catching

the coronavirus.

To build the mask detection solution with AI camera, we leverage

the face detection model in the model zoo. Once the face is

detected, we apply a classification model to check if there is a

mask in the face region. The mask classification model is trained

using Azure Custom Vision service and exported to run with the

AI accelerator. The inference results can send to cloud and

provide a dashboard for monitoring and analysis.

3.2 Curbside pickup

In this COVID-19 era, we still need to get essential supplies,

groceries, etc., and we need to do this safely and securely.

Imagine a customer is going online the local retailer and making a

grocery purchase as part of the customer’s account, and chosen to

have the car type, color, and license plate registered with the

retailer. When the customer pulls up to the retailer, the car type,

color, and license plate are detected. The online purchase products

are brought out and placed in the trunk.

To build car type, color, license plate detection solution for

curbside pickup solution, we took pictures of different types of

cars, different colors of cars from all angles, inside parking

garages, in the shade, and outside in the sun. Some with license

plates and others without. Those pictures are uploaded to the

Azure Custom Vision to train a classifier. The model is exported,

packed to containers, and deployed to the AI camera. The

inference results can send to cloud and integrate with retailer’s

information systems.

4 Conclusion

AI camera integrates hardware accelerated AI with security chips

and connect to Azure services in a simple to develop, integrate

and maintain software, services, and hardware solution. It

supports popular classification and object detection deep neural

networks and achieves high throughput in consideration of power

consumption. Azure integrated toolchain makes it easy to build

the solution in a short time and deploy at scale. We will keep

working with ecosystem partners to build various AI powered

intelligent edge devices.

REFERENCES
[1] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim,

Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. 2015.
Evaluation of docker as edge computing platform. In Proceedings of IEEE
Conference on Open Systems, 130-135.

[2] Mathew Salvaris, Danielle Dean, and Wee Hyong Tok. 2018. Cognitive
Services and Custom Vision. Deep Learning with Azure. Apress, Berkeley, CA.

[3] David Jensen. 2019. Azure IoT Edge Core Concepts. Beginning Azure IoT Edge
Computing, 17-47. Apress, Berkeley, CA.

[4] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
European Conference on Computer Vision, 116-131.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 770-778.

[6] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. 2017.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of AAAI conference on artificial intelligence, 4278-
4284.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 4510-4520.

[8] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767.

[9] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, 7263-7271.

[10] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of IEEE conference on computer vision and pattern
recognition, 4510-4520.

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
and Cheng-Yang Fu, Alexander C. Berg. 2016. Ssd: Single shot multibox
detector. In Proceedings of European conference on computer vision, 21-37.

[12] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Proceedings of Advances in neural information processing systems, 91-99.

